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Abstract

There is no universally accepted methodology to determine how much confi-
dence one should have in a classifier output. This research proposes a framework
to determine the level of confidence in an indication from a classifier system where
the output is or can be transformed into a posterior probability estimate. This is
a theoretical framework that attempts to unite the viewpoints of the classification
system developer (or engineer) and the classification system user (or warfighter).
The developer designs and tests the classification system at a macro-level. The user
fields the system in an environment often quite different that those used to develop
the system. The user operates at a micro-level and is interested in the indications
as they are made by the system. The paradigm is based on the assumptions that
the system confidence acts like, or can be modelled as a value and that indication
confidence can be modelled as a function of the posterior probability estimates. The
viewpoints of the developer and the user are unified through the proposition that
the expected value of the user’s confidence should be approximately equal to the

developer’s confidence.

We choose a quadratic function to represent the ascent from zero confidence
to absolute confidence. The tactical issues involved with fitting such a curve are
addressed in this research. Once we have fit the appropriate quadratic function to the
distribution of the posterior probability estimates, we have equated the engineering
confidence to the user confidence. Two methods of applying the new classifier (the
forced decision classifier with the confidence function overlaid) are suggested. One
could await a posterior probability estimate output from the classifier and then make
a declaration decision based on a random number draw as compared to P(DEC|p).
Most users would find the idea of “rolling the dice” on the declaration undesirable and

so a second alternative is suggested. The user could consider a sequence of classifiers

XV



devised simply from the application of a threshold on the confidence function. This
creates a rational portfolio of classification systems based on the user’s confidence
function. Each member of the portfolio has a non-declaration rate and associated

recalculated engineering confidence.

The introduction of the non-declaration possibility induces the production of a
higher-level value model that weighs the contribution of engineering confidence and
associated non-declaration rate. Now, the task becomes to choose the appropriate
threshold to maximize this overarching value function. This paradigm is developed
in a setting considering only in-library problems, but it is applied to out-of-library
problems as well. Introduction of out-of-library problems requires expansion of the
overarching value model. This confidence measure is a direct link between traditional
decision analysis techniques and traditional pattern recognition techniques. This
methodology is applied to multiple data sets, and experimental results show the sort

of behavior that would be expected from a rational confidence paradigm.
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A CONFIDENCE PARADIGM FOR
CLASSIFICATION SYSTEMS

1. Introduction

1.1 Classification Problem and Confidence Definitions

In general, a classification problem is a problem where it is of interest to assign
an object to one of a predetermined number of classes based upon features from
measurements of the object. In addition to knowing which class the object belongs,

it is also of interest to know how confident one should be in that assignment.

While “confidence” is a widely used term, very few people can actually define
it. According to Webster’s Dictionary [2], “Confidence is a feeling of trust (in some-
one or something).” Wikipedia [3] defines it by saying “Confidence is trust or faith
that a person or thing is capable.” Confidence is an age-old concept; all the great
philosophers (Socrates, Plato, Aristotle, Plotinus, St Augustine, St Aquinas, Machi-
avelli, Descartes, Hobbes, Locke, Rousseau, Kant, Marx, Mill, Confucius) discuss
having confidence in many different ideas, but none of them actually define confi-
dence. Aristotle comes the closest to defining confidence when he discusses courage
being the mean between fear and confidence [3]. Still, he does not specifically define
confidence. The common thread throughout these definitions is that confidence is a

measure of how much one can trust something or somebody.



In statistics, confidence is discussed among both frequentists and Bayesians.
Frequentists typically measure the probability of the data given a model, and Bayesians
typically measure the probability of a model given the data [23]. From a frequentist
point of view, a 95 % confidence interval means that if the experiment was run 100
times, the true parameter of interest would fall inside the interval approximately 95
times [64]. From a Bayesian point of view, the posterior probability is often used as
a measure of confidence. This probability has an intuitive meaning. A high value
indicates that there is a high probability that the model is correct (and thus, a high
level of confidence should follow) [23]. The problem with simply using the posterior
probability is that, in practice, these are hard to estimate accurately [51]. When
evaluating a classifier or classifier ensembles, most of the commonly used measures
are based upon the performance of the classifier on the entire data set. The main
objective of this research is to develop a confidence paradigm for a classification
system; one useful product of this confidence paradigm is a measure which can be

applied to the individual declarations of a classification system.

1.2 Combat Identification and Automatic Target Recognition

Following the argument laid out in Laine [40], as the United States Air Force
continues to become more and more technologically advanced, it is able to effectively
kill any object identified as a target. Air Force Doctrine Document (AFDD) 2-1: Air

Warfare [63] states that “if the enemy’s key targets, target sets, or centers of gravity



(COGs) can be found and identified, they are usually within airpower’s reach.” Of
course, identification is simply one link in the kill chain; this kill chain may include
processes such as search, detect, track, classify, identify, assign, weapon launch,
target acquisition, target damage, and kill assessment [26]. “Combat identification
(CID) is often viewed as the weakest link in the military’s kill chain [26].” As this is

the considered the weakest link, CID needs improvement the most.

Sadowski [57] broadly defines CID as “the process of attaining an accurate
characterization of detected objects in the joint battlespace to the extent that high
confidence, timely application of tactical military options and weapons resources can

occur.” At the heart of CID is making high confidence declarations.

Laine [40] lays out two types of CID: cooperative and non-cooperative. Identi-
fication, friend or foe (IFF) systems are an example of cooperative CID. IFF systems
involve the communication between two friendly electronic systems. When feedback
from one of the systems is not obtained, non-cooperative CID must be implemented.
Non-cooperative CID can be further broken down into two categories: man-in-the-
loop and autonomous. A non-cooperative man-in-the-loop system is one where a
human makes the final decision of whether a target is a friendly or hostile. A non-
cooperative autonomous system is one where this decision is made automatically
without human intervention; such a system is an automatic target recognition (ATR)
system [40]. An ATR system seeks to automatically recognize targets as friendly or

hostile (or a more specific type of target). There are two additional labels that may



be used by ATR systems. If a system is not confident enough in the information
available, a non-declaration status can be used. This delays the system from making
a declaration until more evidence is obtained (maybe via classifier fusion) [40]. In
addition to a non-declaration status, an out-of-library status may also be used. Any
target type that an ATR system has observed before (or has been used to train the
classifier system) is considered an in-library target type; any target type that an
ATR system has not observed before (or has not been used to train the classifier
system) is considered an out-of-library target type [4]. Since it is quite possible that
an ATR system may encounter a target type that has not been seen before, out-of-
library status allows an ATR system to account for this occurrence in the combat

environment [56].

1.3 Research Goal and Application Areas

Ho [27] and Melnik et al. [46] discuss three types of classifier outputs: abstract
(single class declaration), rank (ordered list of class membership), and measurement
(magnitude of class selection). The goal of this research is to develop a confidence
paradigm for classification systems; one product of this paradigm is the confidence
in the indication of a classification system. Specifically, this research is concerned
with classification systems that produce measurement level outputs that are or can

be transformed into posterior probability estimates.



The paradigm is demonstrated on a synthetic problem and two real-world
classification problems. Further, the paradigm is applied to an ATR problem. The
main goal of an ATR system is to identify hostile targets that can be exploited by
friendly forces. In such an ATR system, it would be useful to not only identify targets
of interest but also to specify how much confidence the system has that what it has
just identified is a target. The warfighter is interested in a measure that expresses

the confidence that a system has in any given indication [53].

1.4 Contributions of this Research

This research makes several contributions as it addresses the overarching re-
search goal. First, this research develops a confidence paradigm that encompasses
and generalizes current practices. One result of this paradigm is a new confidence
quantifier that unites traditional decision analysis techniques and current pattern
recognition techniques. The main axiom of this contribution is as follows: the class
specific confidence we have in the output of a classifier, on average, should be ap-
proximately equal to the confidence we have in the classifier operating on that class.
This research develops a methodology to determine the parameters of a general-
ized confidence function within the confidence paradigm. One novel application of
the generalized confidence function is a new non-declaration methodology using a

stochastic implementation.



A new use of the popular Kullback-Liebler distance to determine how well a
classifier generalizes to an independent data set is developed. This research demon-
strates the effectiveness of a new out-of-library detector and demonstrates the new
concept of an out-of-library non-declaration. The new paradigm unites multiple
performance measures under an overarching value model that leads to choosing the

optimal operating point.

An algorithm is developed that minimizes a “confidence” measure called Binned
Error in the Posterior (BEP). Then, we prove that training a classification system
using back-propogation to minimize sum of squared error also minimizes BEP. This
allows us to show that minimizing this confidence measure leads to outputs of the

classification system which are, in the limit, posterior probabilities.

1.5 Organization of the Dissertation

The following is the organization of the dissertation. Chapter 2 provides a
summary of the current literature as it relates to confidence in a classifier indication.
In the literature, we have seen that posterior probability estimates or constructs
known as confidence scores are employed as confidence measures [49, 53]. There is
a need to measure how well these confidence measures perform across a number of
exemplars; one example of this, as put forth by Parker et al. [49], is the confidence
error. Ross [53] makes the statement that under the discrete form of confidence error,

a confidence score is ideally a posterior probability. We present an algorithm that



minimizes the confidence error. We show that training a multiple layered perceptron
(MLP) neural network using back-propagation to minimize sum of squared error
also minimizes the confidence error in Chapter 3. This allows us to show that, when
training a classification system using back-propogation to minimize confidence error,

the outputs of the classification system are posterior probability estimates.

We develop a confidence paradigm in Chapter 4. This is a theoretical frame-
work that attempts to unite the viewpoints of the classification system developer (or
engineer) and the classification system user (or warfighter). The developer designs
and tests the classification system at a macro-level. The user fields the system in an
environment often quite different that those used to develop the system. The user
operates at a micro-level and is interested in the indications as they are made by the
system. The paradigm is based on the assumptions that the system confidence acts
like, or can be modelled as a value and that indication confidence can be modelled
as a function of the posterior probability estimates. The viewpoints of the developer
and the user are unified through the proposition that the expected value of the user’s

confidence should be approximately equal to the developer’s confidence.

This all occurs in a setting where the classifier is developed as a forced de-
cision tool. The developer has attached confidence, which we model as value, to
this classifier. The developer typically characterizes system performance based on
statistics such as averages. The user does not live in a world of average performance.

The user must make decisions based on the indications of the classifier and wants



to make these decisions with high confidence. Implicit in all this is the fact that a
forced decision classifier that bases its decisions on the values of estimated posterior
probabilities attaches (even if unconsciously) equal confidence to all its decisions.
A notional histogram along with the implied forced decision confidence function is

shown in Figure 1.1.
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Figure 1.1  Notional Histogram with Forced Decision Confidence Function.

Standard practice is to elevate the performance of the classifier by not allowing
decisions based on some range of lower magnitude posterior probability estimates.
This philosophy leads to the rejection region concept. Essentially, decisions based on
posterior probability estimates below some pre-determined threshold are deferred.
Here, two levels of confidence are apparent: none and absolute. In this scenario,

the confidence function can be thought of as simply the probability of a declaration



given a posterior probability estimate, P(DEC|p). A notional histogram along with

an implied rejection region confidence function is shown in Figure 1.2.
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Figure 1.2  Notional Histogram with Rejection Region Confidence Function.

Believing that a middle ground exists between these extremes, we choose a
quadratic function to represent the ascent from zero confidence to absolute confi-
dence. A notional histogram along with a quadratic confidence function is shown in

Figure 1.3.

The tactical issues involved with fitting such a curve are addressed in Chapter
4. Once we have fit the appropriate quadratic function to the distribution of the pos-
terior probability estimates, we have equated the engineering confidence to the user
confidence. Two methods of applying the new classifier (the forced decision classifier

with the confidence function overlaid) are suggested. One could await a posterior
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Figure 1.3  Notional Histogram with Quadratic Confidence Function.

probability estimate output from the classifier and then make a declaration decision
based on a random number draw as compared to P(DEC|p). Most users would
find the idea of “rolling the dice” on the declaration undesirable and so a second
alternative is suggested. The user could consider a sequence of classifiers devised
simply from the application of a threshold on the confidence function. This creates
a rational portfolio of classification systems based on the user’s confidence function.
Each member of the portfolio has a non-declaration rate and associated recalculated
engineering confidence. The introduction of the non-declaration possibility induces
the production of a higher-level value model that weighs the contribution of engi-
neering confidence and associated non-declaration rate. Now, the task becomes to

choose the appropriate threshold to maximize this overarching value function. This

10



overarching value model is addressed in Chapter 6. This paradigm is developed in a
setting considering only in-library problems, but it can be applied to out-of-library
problems as well. The addition of out-of-library problems is presented in Chapter 5
along with a demonstration of out-of-library non-declarations. Once out-of-library
problems are added, the higher-level model is expanded; this expanded overarching
value model is presented in Chapter 6. Experimental results are documented in
Chapter 7. Contributions and conclusion of this research as well as items for future

work are presented in Chapter 8.
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2. Literature Review

2.1 Literature Overview

There is an extensive literature regarding classification confidence, but there
seems to be no methodology that is universally accepted. Many articles argue that
confidence acts like a probability and thus, conforms to the axioms of probability
while others argue that confidence follows some other paradigm. Many of these
articles treat confidence simply as some real number. Others restrict this idea of
confidence to a number in the closed interval [0, 1]. Still others treat confidence as
a binary value. There is also literature available that may aid in testing potential
confidence measures. Fusion is a popular technique that is thought to increase con-
fidence, and some methodologies place restrictions on the inputs to the fusion (e.g.,
only perform fusion on classifiers that produce a label or a rank). Finally, there
are some miscellaneous articles that are on the periphery of this research effort. The

following section summarizes the current literature as it relates to this research effort.

Richards et al. [51] describe the basic need for a confidence measure. Often,
classifier systems are judged as a whole by using measures such as true positive rate,
false positive rate, and Receiver Operating Characteristic (ROC) curves. However,
it is also useful to have a way to measure how confident the system is on any given
indication. Much of the current literature, [6, 9, 12, 41, 65, 66|, uses either a posterior

probability or something similar to a posterior probability to measure confidence

12



in a given declaration. However, there are problems with simply using posterior
probabilities. Roberts [52] states that the problem in using posterior probabilities as
a measure of confidence is that they sum to 1; this is a problem because if a “rogue”
data point is evaluated, it is treated as if it is a “genuine” data point and thus,
is classified with “apparent confidence” into one of the output classes. In the ATR
application, this is the problem with out-of-library targets. Richards et al. [51] states
that using a posterior probability is troublesome because this requires specification
of the prior probabilities which are often unknown. Ross and Minardi [53] state that
posterior probabilities are particulary difficult for classification systems to estimate.
Because of these problems, researchers continue to search for a better confidence

measure for classifier declarations.

The remainder of the chapter is organized as follows. Section 2.2 discusses
confidence paradigms in the literature. Section 2.3 reviews those confidence measures
where the measure is some real number. Section 2.4 discusses those confidence
measures where the measure is restricted to [0, 1]. Section 2.5 covers those confidence
measures where the measure is a binary value. Section 2.6 discusses some of the
literature as it relates to testing a confidence measure. Section 2.7 discusses classifier
fusion as it relates to confidence. Section 2.8 covers some other literature related to

this research.
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2.2 Confidence Paradigms

There is no universally accepted confidence paradigm in the literature. The
most popular paradigm to evaluate confidence is as a probability, [6, 41, 46, 65,
49, 66, 51, 9, 53, 12, 30, 61]. Thus, each of these papers models confidence in a
fashion such that confidence to conform to the axioms of probability. Goh et al. [37]
state that the confidence in an exemplar is proportional to the maximum posterior
probability across the possible classes; however, more information than just the
posterior probability is needed for an accurate confidence estimate. Other authors
treat confidence as something other than a probability. Jaeger [31] treats confidence
and information as identical and discusses confidence as the trust one should have
in a classifier. Therefore, confidence does not necessarily conform to the axioms of
probability. Also, Tubbs and Alltop [62] discuss confidence as “probabilities, beliefs,
or any suitable weight” and define a measure which does not sum to one across
the possible classes (one of the axioms of probability)